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A steady isolated vortex is produced in a horizontal layer of mercury (of thickness 
a) ,  subjected to a uniform vertical magnetic field. The vortex is forced by an electric 
current going from an electrode in the lower plane to the circular outer frame. The 
flow is investigated by streak photographs of small particles following the free upper 
surface, and by electric potential measurements. The agreement with the asymptotic 
theory for high values of the Hartmann number M is excellent for moderate electric 
currents. In  particular all the current stays in the thin Hartmann layer of thickness 
a / M ,  except in the vortex core of horizontal extension a/Mi.  For higher currents, the 
size of the core becomes larger and depends only on the local interaction parameters. 
When the current is switched off, we measure the decay due to the Hartmann 
friction. A similar study is carried out for a vortex created by an initial electric pulse, 
and for a pair of vortices of opposite sign. For all these examples, the dynamics can 
be described by the two-dimensional Navier-Stokes equations with Hartmann 
friction, except in the vortex cores. Finally a vortex is produced near a lateral wall 
and a detachment of the boundary layer parallel to the magnetic field occurs, by 
which a second vortex of opposite sign is generated. 

1. Introduction 
The theory of rectilinear laminar duct flows of a conducting fluid in a transverse 

uniform magnetic field is well understood and has been tested experimentally, and 
the topic is reviewed by Hunt & Shercliff (1971) and Shercliff (1975). This theory can 
be extended to three-dimensional flows a t  high Hartmann number, when the 
electromagnetic forces dominate the advective effects. However only a few situations 
have been investigated experimentally. Circular flows between two concentric 
cylinders, driven by a radial electric current, were studied by Baylis (1971) and 
Tabeling & Trakas (1984). The circular jet obtained between two concentric annular 
electrodes in an axial magnetic field was investigated by Lehnert (1952). A double 
chain of two-dimensional vortices was then observed as the result of an instability. 
Another kind of jet was obtained by Hunt & Malcolm (1968) and Malcolm (1970) 
around two circular electrodes set opposite to each other in an axial magnetic field, 
while the current was confined to the cylinder of fluid joining the two electrodes. 

The present paper deals with new examples of flows a t  high Hartmann number, 
involving a vortex created by the interaction of the magnetic field with the current 
injected a t  an electrode. The experimental device and the method of measurement 
are described in $2. We report in $4.1 an experimental study of a single steady 
vortex, in which the electric steady forcing is balanced by the Hartmann friction. We 
consider in $4.2 the decay of this vortex by the Hartmann friction when the current 
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is switched off. Another kind of decaying vortex, generated by a short current pulse, 
is described in $4.3. A pair of two such vortices of opposite sign with a translating 
motion is studied in $4.4. Finally we consider in $4.5 the interaction of a vortex with 
a lateral wall, which involves a detachment of the boundary layer parallel to the 
magnetic field. The experimental data are compared to the corresponding theoretical 
results of $3,  obtained by assuming that the electromagnetic effects on a typical 
three-dimensional eddy dominate the viscous and advective effects. 

The important feature of the situations that we consider here is the existence of a 
two-dimensional bulk flow in the plane perpendicular to the magnetic field, outside 
the thin boundary layers. The only electromagnetic effects on these two-dimensional 
flows is the Hartmann friction and the forcing due to the injected currents. These 
effects are fairly weak, so that the inertia of the flow is important, even in a strong 
magnetic field. Since by contrast the three-dimensional flows are generally quickly 
damped by the eddy currents, these two-dimensional flows should be the only ones 
to survive. We can expect to observe them preferentially when they are allowed by 
the boundary conditions. This is the case in a fluid limited by two insulating planes 
perpendicular to the magnetic field. A well-known example is the persistence of 
strong residual turbulence in duct flows with a rectangular cross-section submitted 
to a transverse magnetic field (Lielausis 1975; Branover 1978; Branover & Gershon 
1979). Kolesnikov & Tsinober (1974) have studied two-dimensional turbulence 
generated by a grid in a similar duct. The same idea underlies an investigation of two- 
dimensional turbulence produced in a confined layer of mercury by Sommeria (1986) 
and Verron & Sommeria (1987). These studies are summarized, with some of the 
results presented here, in Sommeria (1985).The flow was electrically driven by a 
lattice of electrodes, each acting in the same way as in the present work. However, 
we deal here with much simpler flows and the magnetohydrodynamic aspect can be 
studied in detail. 

2. The experimental device 
A vertical magnetic field between 0 and 1 tesla, with a uniformity better than 1 %, 

is provided by an electromagnet in a gap of thickness 6 cm and section 20 x 56 em2. 
The main apparatus is a closed circular box with an inner diameter of 12 cm 
containing a horizontal layer of mercury (Figure 1). The bottom is made of an 
insulating plate a t  the centre of which a circular copper electrode is inserted flush 
(diameter 2.5 mm). The outer frame is a thick copper ring that can be considered as 
infinitely conducting. The top cover is made of transparent acrylic. Velocity is kept 
small enough (< 10 cm/s), for the deformation of the upper surface to be negligible. 
Great care is necessary to avoid mercury pollution in order to keep a really free upper 
surface. For this purpose we use distilled mercury of good purity and maintain a 
permanent pressure of nitrogen (U quality) inside the box. Furthermore the bottom 
is covered with polypropylene and the copper parts are protected by a chemical 
nickel layer (50 pm thick) with a very thin electrolytic gold coating. The gold 
is dissolved at  the first contact with mercury but the underlying nickel is then 
very clean and the electric contact excellent: the contact resistance is less than 

OZ/mm2. The walls are highly polished to avoid perturbations of the boundary 
layers. The temperature is maintained constant a t  14 "Cf 1 "C by the iron of the 
electromagnet and its cooling circuit. Under these conditions the viscosity of 
mercury is u = 1.1720.1 lop7 m2 s, the density p = 1.355 lo4 kg m-3, and con- 
ductivity (T = (1.05&0.002) lo6 O-' m-l. 
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FIGURE 1. Cross-section of the circular tank with a schematic representation of the current 
supply and device for potential measurement. Dimensions are indicated in mm. 

The flow is investigated by two methods. We get the velocity field by measuring 
the short streaks of aluminized rilsan particles 50 pm in diameter, which follow the 
free surface. These particles are sprinkled on mercury (in an argon atmosphere) 
before we close the box and remain there for the full series of experiments. Lateral 
illumination is provided by two sets of optic fibres. The time of exposure is precisely 
controlled by an external electrically driven diaphragm shutter. Because of the 
presence of the electromagnet above the free surface, a 45" mirror is used, and we can 
only visualize a band 2 ern wide at  any one time. The second method is the 
measurement of the potential difference between the electrode and the outer frame. 
This low voltage (< 1 mV) is amplified 5000 times by an operational amplifier and 
most of the noise is eliminated by a low-pass filter. A minimum voltage variation of 
0.5 pV can be detected. 

In addition to this circular box, a similar square box of side 12 cm, described by 
Sommeria (1986), with a bottom containing a periodic network of 36 electrodes, is 
used to generate one or two isolated vortices by current pulses and to study their 
evolution. 

3. Theory 
3.1. The approximation of strong magnetic jields 

We consider the fluid confined between two horizontal planes whose equations are 
z = 0 and z = a ,  with respect to a set of Cartesian coordinates x, y ,  z .  We suppose that 
the magnetic Reynolds number is small, which means that the magnetic field h 
produced by the electric currents is negligible compared to the uniform vertical 
magnetic field Bo generated by the electromagnet. The equations of magneto- 
hydrodynamics for an incompressible velocity field u are then (see for example 
Shercliff 1965). 

(1) 
av  

Ah = - Po gB0 

V - U  = 0, V - h  = 0, (3) 

where d /d t  = a/at+u.V and h is related to the density of electric current j by 

,uoj = V x h. (4) 
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We shall also need Ohm's law to calculate the electric potential @ 

j = a ( - V @ + u x B , ) .  (5) 

The domain of strong magnetic fields is characterized by large values of the 
Hartmann number M and of the interaction parameter N defined by 

M = (a/pv)iB,a, N = (aB:/p)a/U, 

where U is a typical velocity scale. The square of the Hartmann number and the 
interaction parameter can be considered as the ratio of the effect of the eddy currents 
(upon a typical three-dimensional initial state) to the viscous and to the advective 
forces respectively. In  a strong magnetic field, the flow can be split into a core where 
vertical derivatives are weak, and a thin Hartmann layer of thickness a /M at  the 
bottoni of the box, matching the outer flow with zero velocity a t  the wall. A different 
kind of boundary layer, parallel to the magnetic field, lies along the lateral walls. 
Shear layers also arise from the electrical discontinuities a t  the edge of the electrodes, 
and follow the magnetic field lines. The thickness of these two kinds of layers is of 
the order of a/Mk for slow flows but can be enlarged by advective effects a t  higher 
velocities and their thickness can then depend on the interaction parametcr. Various 
kinds of advective eRects have been studied by Hunt & Leibovich (196'i), Kapila & 
Ludford (1977), Tabeling & Chabrerie (1981). 

In  the Hartmann layer the z derivatives greatly exceed the transverse derivatives, 
so one can neglect, to  a first approximation, all the terms which do not involve z 
derivatives in ( 1 )  to (3) .  The new equations can be integrated easily with respect to 
the z variable, taking into account the condition of zcro velocity a t  the bottom plane 
z = 0. u,(x, y, z ,  t )  = (l-C-'M/a) V(z ,  y, t ) ,  

where a = ,uo(pva); and the horizontal projection of a vector is denoted by the 
subscript 1. Using (7)  and neglecting the horizontal derivatives of h with respect to 
the vertical ones. the three components of (4) yield on the bottom plate 

V x h, = ,uo.jz(z=o) Bo/R, +aV x V. (10) 

The vector j ,  vanishes a t  the electrodes, considered as infinitely conducting, so that 
V = 0 there. By contrast jz(z=o) is equal to the current density injected through the 
electrode surface and vanishes on the insulating area,s. 

In the limit of strong magnetic fields, ( 1 )  and (2) state that the vertical derivatives 
of u and h are small outside the Hartmann layers. A flow structure consistent with 
( 1 )  to (3) is then a two-dimensional velocity field, for which velocity and magnetic 
field must be matched with the upper region of the Hartmann laycr. The two- 
dimensional bulk flow must then be assimilated to V(x, 9, t )  and the following 
relations are obtained 
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This flow satisfies the condition of a free upper surface, so a boundary layer is not 
required a t  the plane z = a.  The electromagnetic effects on the two-dimensional flow 
are a linear friction term with a characteristic time t ,  = (p/crv)ia/B, and a vorticity 
source or sink proportional to the electric current j,. Physically, the corresponding 
driving force is due to the horizontal projection JL of the injected current integrated 
along a vertical line. The curl of this force JL x B, is equal to - (V * J I )  B,. Because of 
the current conservation, V. JI is equal to the current density through the bottom, 
which leads again to (13). The driving forcefis defined from (10) only by its curl, so 
that the pressure in (11) does not need to be the same as in (2).  Notice that 
Jl x B, is non-divergent everywhere, and the Hartmann friction as well, SO that 
the physical pressure must be P instead of P'. 

The velocity field of (11) is discontinuous at  the edge of the electrodes. The flows 
over conducting and insulating areas must be matched by a shear layer parallel to 
the field, where ( 1 )  has to be used without approximation. This calculation is carried 
out in $3.3 for the simple case of an axisymmetric electrically driven vortex, when 
the velocity is small enough for the secondary radial flows to be negligible. 

3.2. Xtability of the Hartmann layer and outer flow 

We have described a class of asymptotic solutions of the MHD equations with a thin 
Hartmann layer and a quasi-two-dimensional core, To have a physical reality, this 
structure of the flow should not be modified by the growth of small perturbations. 
Two kinds of instabilities could be expected according to whether the Hartmann 
layer or the core of the flow is concerned. 

Lock (1955) has calculated that the Hartmann layer in a duct is unstable to 
infinitesimal perturbations for values of the parameter ReIM larger than 50000. The 
corresponding amplified perturbations have a small scale of the order of the 
Hartmann-layer thickness, and are only weakly affected by the magnetic field. The 
stability problem is then nearly identical to that of an ordinary boundary layer with 
an exponential profile of the same thickness (obtained with a suction a t  the wall). 
Indeed the parameter ReIM is nothing other than the Reynolds number calculated 
with the layer thickness. I n  practice, the rectangular duct flows are found to be 
turbulent for values of ReIM higher than 250 (Hua & Lykoudis 1974), so the 
Hartmann layer is unstable to perturbations of finite amplitude much below the 
threshold of the linear stability theory. In  fact considerable turbulent fluctuations 
are still observed for values of ReIM below 250, although the pressure losses 
correspond to the laminar law. However these fluctuations are generated a t  the duct 
entrance or upstream and survive for a long time because of their two-dimensional 
dynamics (Branover & Gershon 1979), so they do not involve any instability of the 
Hartmann layer. Indeed such fluctuations are not observed in an annular (electrically 
driven) duct flow entirely embedded in the magnetic field (Gel'fat et al. 1971). Thus 
we can consider in practice that the condition 

ReIM = M / N  = (p/crv$U/B < 250, (14) 

must be satisfied for the Hartmann layer to be laminar and to be described by (6)-(8). 
This condition is satisfied in all the experiments that we report here. 

The possible growth of three-dimensional perturbations in the two-dimensional 
bulk depends of course on each particular flow. General guidelines can however be 
obtained by assuming that the different perturbed horizontal planes interact only by 
electromagnetic effects, which is likely to be true in a strong magnetic field (Alemany 
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et al. 1979). The growth of three-dimensional perturbations can be then related to the 
unpredictability of the two-dimensional motions. This idea lead Sommeria & Moreau 
(1982) to propose that the flow structures with a large horizontal size should stay 
two-dimensional, while the smaller structures become three-dimensional. The 
transition between these two behaviours corresponds to a length proportional to 
aN-g, the coeficient of proportionality depending on the particular flow structure. 
Since the flows that we are considering here are not chaotic, the decorrelations in the 
different planes should not grow fast and the scale of transition should be small. 
Possible instabilities are likely to be restricted to the parallel shear layers. 

3.3.  A n  electrically driven vortex 

A steady current I flows from the central electrode to the frame through the fluid, 
stimulating it into a circular motion (figure 2).  This situation can be first analysed 
by the two-dimensional equation (11) and relation (13). If viscosity is neglected, a 
steady axisymmetric solution is immediately obtained for the azimuthal velocity 

component vg 1 

and the magnetic field h vanishes. The vorticity genemted a t  the electrode is confined 
above it. The electric current vanishes in the bulk flow, and Ohm’s law ( 5 )  is reduced 
there to V@ = u x B,,, so that the electric resistance is 

Let us now take into account the correction due to viscous effects in the vortex 
core, but neglect radial and vertical velocity components, which is valid for large 
interaction parameters. This problem was solved directly by means of Bessel 
functions of the radius by Kalis & Kolesnikov (1980). However, the convergence of 
this method is very poor a t  large Hartmann numbers. Furthermore the authors 
assume that the current distribution in the electrode is not influenced by the fluid 
motion, which is not true in a strong magnetic field. It is then more simple to consider 
the Hartmann layer and the core of the flow separately, as was done by Hunt & 
Stewartson (1969) in a similar situation, mathematically identical for the bulk flow. 
Their problem can indccd be obtained from the present one by interchanging h and 
v and reflecting in the plane z = a. However the physical situation is quite different : 
the flow was restricted to a jet rotating around the electrode and the magnetic field 
decreased as l / r  in the former case, while the reverse situation occurs here. The 
classical method is to add and subtract (1) and (2) written in polar coordinates r ,  8, 
z and to drop the second order z derivatives, which yields in a non-dimensional 

(17) 
form 

-Ma(v+h)/a< = D,(v+h), 

M a( v - h)  /i3c = D,(v - h) , 
where x = r / a ,  6 = z /a ,  

v = ( a / T )  we, h = (27~a/,u~ I )  h,, @ = (2nacr/I) q5, 

D, = a/ax(l/xa/ax)> 
each of (17) and (18) is formally analogous to a time dependent diffusion equation for 
the quantities v + h and v - h, the ‘time ’ being either - z /M or z /M respectively. The 
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FIGURE 2 .  The electric current streamlines (a )  without magnetic field, ( b )  in a strong magnetic field. 
The Hartmann layer, the outer layer parallel to the field and the vortex core are presented, as well 
as a vertical velocity profile. 

boundary conditions for the bulk flow correspond to the upper part of the Hartmann 
layer and can be derived from (6)-(10). 

(u+h)(<=o) = -(u--)(c-o) for x < A ,  (v+h)(<-o) = 1 / x  for x > A ,  (20) 

where A = b/a  is the non-dimensional radius of the electrode. 
Analytical solutions can be obtained for AM: P 1 as in Hunt & Stewartson (1969) 

and for Mi 4 1 as in Hunt & Williams (1968). In  the former case, the layer parallel 
to the field arising from the edge of the electrode is much thinner than the radius of 
the electrode and can be considered as locally straight. In  the latter case, this layer 
is replaced by a small region above the point electrode, the vortex core, where 
viscosity effects are important. Although our situation is between these two 
extremes, it is enlightening to write the solution for a point electrode 

(21)  
v ( x ,  5) = - l/x+{exp -Mx2/45+exp - - ~ x Z / 4 ( 2 - C ~ ~ / 2 x , ~  
h(X, 5)  = {exp - M x 2 / 4 ( 2 - z )  -exp - M x 2 / 4 z } / 2 x .  

The potential difference between the electrode and the circular frame at  distance L 
(figure 1) can then be calculated from (5) and (4) by integration along the radius, and 
the result for L 9 h is 

A calculation taking into account the finite size of the electrode can be made by 
a simple numerical method, whose principle is the following. Starting at 5 = 0 with 
v+ h = l/x, x > h and a guess for x < A ,  for example v+h = 0, (17) is integrated to 
give the distribution of v + h a t  6 = 1 .  This distribution can be considered as an initial 
condition for v-h in (18) by means of (19). This equation can be then integrated, 
which leads to a new value of v+h at  x = 0, 6 < h (by (20) ) .  This forward and 
backward process is repeated until the boundary conditions are no longer modified, 
which happens fairly quickly (a precision of is obtained after three iterations of 
this process). The numerical method for integrating the diffusion equation is the 
standard explicit finite difference scheme. The profile of xv a t  the free surface 
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calculated by this method is represented in figure 4 and the variation of the electric 
resistance @ / I  with the magnetic field in figure 5. The difference with the results (21) 
and ( 2 2 )  is small, except in the region near the electrode edge. 

The calculation is valid in the limit of very weak currents corresponding to large 
interaction parameters. Depending on the radius r that, we consider, the flow contains 
different velocity scales U( r )  = T / r  outside the vortex core. The corresponding 
interaction parameter N ( r )  = (crBz/p) r 2 / r  increases s1,eadily from a minimum value 
near the centre to  a maximum a t  the radius of the box. The minimum is located a t  
the radius of the vortex core, on the order of a / M i  for weak currents, and the 
corresponding interaction parameter is 

N ,  = B T C V ~ B , ~ / I .  (23) 

We can then expect that, when the current is increased, nonlinear effects will act first 
in the core and depend only on the parameter N , .  These effects must involve complex 
recirculating flows with a radial component that  would broaden the core. Outside 
this core, the interaction parameter increases steadily and the flow should not be 
affected by advective effects. We can expect that the potential drop mostly occurs 
outside the vortex core for two reasons : the velocity is small inside the core, and the 
electric current can go through a large section of fluid instead of being confined to the 
Hartmann layer for larger radii. We can then write the elcctric resistance, by analogy 
with (16), as 

R =  Bo 1 In (L/?"O)> (24) 
2x(avp)3 

where ro is a characteristic radius of the core, that should depend only on the 
parameter N o .  

3.4. Decaying vortices 

We consider a vortex generated by a short initial current pulse of duration 7 .  The 
driving force of the two-dimensional approximation can be obtained from (13), using 
axisymmetry 

f = B, I / ~ T c ~ u .  

If this force dominates all other effects during the current pulse, the circulation of the 
generated vortex is 

I-, = (B,IT/%pa). 

After this initial stage the vortex should decay exponentially with a characteristic 
time t , .  

At the beginning of the current pulse, before the flow has time to build up, the 
current distribution in the fluid is the same as in the absence of a magnetic field, 
generating a vortex core with a radius on the order of the layer thickness a. However, 
in the very short typical time of the electromagnetic effects p/crBi after the end of 
the pulse, the vortex core should take a new structure with a smaller size on the order 
of a /Mi ,  for low velocities. For higher velocities we can expect a broadening of the 
core due to secondary flows. As in the case of a steady vortex, this effect should 
depend only on the interaction parameter based upon the lengthscale a/Mf and the 
velocity a t  the corresponding radius, which is now 

(25) 

(26) 

N ,  = 2TC((TpV)fa2/1~. (27 ) 

If we consider two vortices of opposite sign, the pair should move without 
deformation a t  velocity 

v = ( T o l d )  exp ( - t / M  
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where d is the distance between the two electrodes and r,, is given by (26). We have 
assumed that d is definitely larger than the core of each vortex. A vortex created near 
a straight lateral boundary should move in the same way, under the influence of the 
image vortex behind the wall. 

4. The experimental results 
4.1. The steady vortex 

A steady current is injected a t  the box centre and returns through the frame. In  the 
absence of a magnetic field we measure an electrical resistance equal to 0.56 mO. The 
distribution of electric potential in mercury is a solution of the Poisson equation, and 
is then analogous to the electrostatic potential near a conducting disk (because the 
conductivity is much larger in copper than in mercury). It can be calculated 
analytically if we assume that the mercury fills an infinite domain limited by the 
plane containing the bottom of the box, and the result is R = ad = 0.19 m a .  If we 
add to this value the resistance of the copper part 0.13 mO, an excess of 0.24 mi2 
still exists, and i t  must be imputed to contact resistance at the surface of the 
electrode. This value is reproducible, even after the mercury has been replaced. 

When the magnetic field is applied, a smooth vortex is obtained (figure 3) and no 
fluctuations are observed on photographs, even a t  the highest current (400 mA) that 
we have used. We did not go beyond this value to avoid an excessive hollowing of the 
free surface near the vortex centre. If any velocity fluctuations exist a t  the surface, 
their relative amplitude is certainly smaller than 5 x lop2, considering the precision 
of the streak measurements. We did not observe any fluctuations of the electric 
potential, either, although we could certainly detect oscillations of relative amplitude 
as small as 2 x lop3. Therefore the flow appears to be very stable. 

The profile of the angular momentum rvo obtained from photographs is plotted in 
figure 4. The vorticity l / r  i3(rve)/ar is restricted to the neighbourhood of the electrode 
as it should be, and the momentum at  large distances is equal to the theoretical value 
(relation (16)). Furthermore the profile near the centre is in good agreement with the 
more complete calculation of $3.3,  when the electric current is small (< 50 mA). 
With larger currents, for example 200 mA, the vortex core is broadened. This effect 
is probably due to the radial transport of vorticity by secondary flows which are 
neglected in the linear calculation of $3.3. These secondary flows are directly revealed 
by the rarefaction of the visualization particles near the centre after a few seconds, 
which means that a weak (< 1 mm/s) radial outward motion exists there. However, 
we are not able to describe the structure of these secondary flows below the 
surface. 

The increase of the electric resistance with the magnetic field is dramatic (figure 5), 
which corresponds to a remarkable feature. Without a magnetic field the resistance 
is mainly due to the fluid in the neighbourhood of the electrode where the current 
density is high. In  a strong magnetic field the whole current flows only in the thin 
Hartmann layer, and the contribution of the regions far from the electrode decreases 
only logarithmically with the radius. For small currents, the agreement with (16) is 
fairly good and it is excellent with the numerical calculation (figure 5). This result can 
be considered as a direct measurement of the Hartmann-layer thickness inferred 
from its electrical resistance. The theoretical curve of figure 5 is obtained after adding 
the resistance of the copper part and the contact resistance measured without the 
magnetic field. The contact resistance is probably underestimated by this method, 
since the current lines arc more confined near the edge of the electrode in the 
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FIGURE 3. Photograph of the streak in a steady vortex. The band of the free surface is observed 
by means of a 45" mirror. B = 0.48 tesla, I = 50 m a ,  time of exposure 0.1 s. 
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FIGURE 4. The non-dimensional momentum vII r / T  versus the non-dimensional radius r /a ,  
obtained from photographs, B = 0.5 tesla. ., I = 50 mA; 0, Z = 200 mA. 

magnetic field, so that the current density is greater. One could explain by this effect 
that the experimental results for a current 6.5 mA are slightly (1 YO) above the 
theoretical ones. 

For higher values of the current, the resistance is smaller, and this fact is consistent 
with the broadening of the core, as discussed a t  the end of 53.3. We have calculated 
the radius of the core ro  inferred from the resistance by (24), and plotted it in figure 
6 as a function of the inverse of the interaction parameter N , ,  for a wide range of 
magnetic fields and currents. The collapse of the pointJs near a single curve is a proof 
that the parameter N ,  is indeed the relevant one to describe the advective effects in 
the vortex core. Notice that appreciable nonlinear effects appear only a t  really low 
values of N , ,  which means that this vortex flow is not very sensitive to these 
effects. 

4.2. The decaying vortex 

When the current is switched off in the preceding experiments, the voltage decreases 
slowly, due to the vortex decay. I n  figure 7, the evolution of the electric potential is 
compared to the decay exp - t / t ,  of a two-dimensional bulk flow, due to Hartmann 
friction only. The observed rate of decay depends on the initial velocity, related in 
turn to the driving current in the previous steady situation. In  the case of strong 
magnetic fields and small initial currents, for which secondary flows must be 
negligible, we find a characteristic decay time of 0.91 t,. This is illustrated by the 
dashed curve of figure 7, obtained for R, = 0.48 tesla and I = 12.5 mA. At the same 
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FIGURE 5. Increase of the electrical resistance with the magnetic field B, for different values of the 
current 1. The theoretical result (relation (16)) for a two-dimensional vortex is represented by a 
dotted line and the result from the numerical solution of (17) and (18) is represented by a solid 
line. 
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FIQURE 6. Core radius T, defined by (24) (and normalized by its value for a very small electric 
current) versus N , ,  the interaction parameter of the vortex core. The current is between 0 and 
0.4 A and the magnetic field is indicated in the figure. 
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FIGVRE 7 .  Decay of the electric potential CP at the electrode (normalized by its initial value @,,) 
versus the non-dimensional time t/t,, after the steady current is switched off. The Hartmann decay 
is represented by a solid line and the experimental result for a small initial current (12.5 mA) and 
B, = 0.48 tesla by a dotted line. The other curves are obtained with an initial current 50 mA and 
different values of the magnetic field. 

time the decay rate of the velocity outside the core, measured from photographs, 
corresponds well to the Hartmann friction. Therefore the increased decay of the 
potential is due to a broadening of the core by viscous diffusion during the decay. 
When advective effects are influential (i.e. for small magnetic fields or large initial 
electric current), the rate of decay is faster. This fact can be explained by the 
broadening of the core due to the advective transport. Notice that as the vortex 
becomes weaker, the decay rate is close to 0.91 t , ,  probably because the secondary 
flows have disappeared. This behaviour is shown in figure 7 for an initial current 
50 mA and decreasing values of the magnetic field. 

4.3.  Isolated vortex generated by a current pulse 
Electric pulses of 2 A during a time 7 = 0.3 s are injected in motionless mercury, and 
the magnetic field is 0.5 or 1 tesla. Velocity profiles are obtained from successive 
photographs with a period of 0.5 s, starting a t  a time origin chosen a t  the middle of 
the pulse. It is especially necessary for the free surface to be extremely clean. Indeed 
the fluid is initially a t  rest, so that the possible thin film of impurities is not broken 
by previous motion. Therefore, the reproducibility of the results was carefully 
checked, and the pulse was chosen to be sufficiently strong to obtain a maximum 
velocity, a t  least a few cm/s. Since the driving force is applied during a short time, 
i t  must be intense to get this typical velocity, and a linear regime in the core was 
never obtained, by contrast with the steady vortex. 

The angular momentum rvo, represented in figure 8, does not depend on the radius 
a t  large distances, but it is surprisingly about 10 % smaller than the theoretical value 
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FIGUHE 9. Decay of the non-dimensionai momentum wDr/To for r / u  = 1, B = 0.5 and 1 tesla 

compared to the Hartmann decay (solid line). 

r,. Therefore there is a strong dissipation effect during the current pulse, even a t  a 
large dist,ance from the electrode. The vorticity profile in the core is different from 
that in the steady case: the central region of positive vorticity is surrounded by a 
screen of negative vorticity. This feature is probably due to some radial transport of 
angular momentum by the strong secondary flows during the current pulse. The 
interaction parameter N ,  is equal to 0.12 for the two cases, so it is not surprising to 
have rather important nonlinear effects in the core. The subsequent evolution, 
indicated on figure 9 at a radius r = a far outside the core, corresponds to the 
Hartmann decay for R, = 1 tesla. However the decay is somewhat faster a t  the 
beginning for B = 0.5 tesla, which could be due to some residual three-dimensional 
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FIG~JRE 10. Photograph of a vortex pair produced by a current pulse between two electrodes 
1.4 s (0) and 3.9 s ( h )  after its creation. The initial position is indicated by the s tars ;  the magnetic 
field is 1 tesla, time of exposure 0.05 s. 

effects persisting far from the core. This result is surprising, as well as the discrepancy 
of the initial circulation with theory, but it is reproducible and not due to a dirty 
surface. In all cases, there is also a slow diffusion of the vortex core shown in 
figure 8 

4.4. A vortcx pair 
A vortex pair is generated by two electrodes at a distance d = 2 cm (using the square 
box). It is created a t  3 cm from one wall and travels towards the opposite wall, and 
the time of observation IS limited by the collision of the pair with this latter wall. The 
velocity of translation is obtained from successive photographs. as shown in figure 
10. taken with a time interval of 0.5 s. The initial value of this velocity, as well as the 
decay arc always in good agreement with (28) (figure 11) for the two values of the 
magnetics field (0.5 and 1 tcsla) that  we used. (The rate of decay increases a little at 
the end, and this bchaviour corresponds to a slight increase of the distance between 
the vortices. duc to the interaction with the image vortex pair behind the front wall.) 
The velocity at the middle of the pair, measured from the particle streaks is equal to 
four times the speed of translation, as it should be for point vortices. Thus the two- 
dimensional approximation is more precise when the vorticity is advected away from 
the electrodes, rather than localized as in the previous section. The reason is probably 
that the relevant interaction parameter should bc calculated with the distance 
between the two vortices and is larger than N d .  

4.5. Intvraction of u vortex with the wall 
We have produced a single vortex in the square box at a distance 3 em and 1 cm from 
one of the sides, while the vortices of s4.3 were created a t  the centre. At 3 cm we 
observe a translating motion in good agreement with (26) ,  for the pair formed with 
the image vortex behind the wall. However a t  1 cm the behaviour is quite different: 
a detachment of the lateral boundary layer occurs, and a new vortex of opposite sign 
is created, as shown in figure 12. The resulting pair of two unequal vortices stays in 
the neighbourhood, with a rotating motion. We did not explore the conditions for the 
otvmmmce of this detachment, which deserves further investigation. 
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FIGURE 11. The decay of the vortex pair, 0 ,  B = 1 tesla, translation velocity; A. B = 0.5 trsla, 
translation velocity; A, B = 0.5 tesla, velocity at the centre of the pair divided by 4. The Hartmann 
decay is represented by a solid line. 

FIGURE 12. Production of a secondary vortex by boundary layer detachment. The main vortex is 
generated by a pulse of 2 A during 0.1 s at the location represented by a star. The wall is at thp 
upper edge of each photo. Magnetic field 1 tesla, time of exposure 0.2 s ( a )  time t = 1.4 s: ( b )  time 
t = 2.4 s .  

5. Conclusions 
The electrically driven steady vortex is a relatively simple MHD flow which seems 

not to have been studied previously. There is a close theoretical similarity between 
this flow and that of Hunt & Stewartson (1969), although the physical situation is 
different. Excellent agreement with the asymptotic theory for high Hartmann 
numbers is obtained when the current is weak. In particular, the confinement of all 
the electric currents to the thin Hartmann layer is confirmed by the dramatic 
increase in the electric resistance as the magnetic field is stronger. For higher 
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currents, a broadening of the vortex core is probably due to recircwlating flows, 
which are not taken into account by the linear asymptotic. theory. We show that this 
effect depends only on the interaction paramrter N ,  based upon the lerigthscale 
a/Mg of the vortex core and the corresponding velocity. 

In most cases, the flow structures decay exponentially with thc characteristic timc 
of Hartmann friction t,, outside the vortex cores. This result could be expected since 
the Reynolds number of the Hartmann layer Re/M was always well undcr the value 
250, below which the Hartmann layer is found to be laminar in ducts. Yet, it scems 
that the Hartmann friction was measured here for the first time in decaying flow 
structures. A lateral diffusion by viscosity effects is observed in the vortex core, as 
well as a broadening by nonlinear effects for very small values of the local interaction 
parameter. Notice also that the dissipation far from the core is somewhat stronger 
than expected for the vortex created by a strong initial current pulse in a rnodcrate 
magnetic field (0.5 tesla). We do not explain this result, which c.ould be due to thc 
persistence of some three-dimensional perturbations. 

An interesting application of these electrically driven flows is the production of 
various two-dimensional inertial flow at high Reynolds number. A great variety of 
steady or unsteady forcings can be obtained by dispatching an electric current in a 
network of many electrodes, as in Sommeria (1986) or Verron & Sommeria (1987). 
The main elementary MHD processes existing in this kind of device have been 
studied here. It appears that  the flow can be well described by the two-dimensional 
Navier-Stokes equation with a vorticity production on the electrodes and the 
Hartmann friction, when the interaction parameter is not too small. The vortcx cores 
are regions with a small scale and high velocity, hence the most influenced by three- 
dimensional effects. However these effects tends to disappear when thc vorticity is 
advected away from the electrode, as in the vortex pair. Notice finally that the flow 
can be influenced by a vortex production due to the detachment of the lateral 
boundary layer. 

The author has benefitTed from useful comments by R. Moreau, and from the 
support of R. Bolcato for the realization of the experimental device. 
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